

NHTSA's 2005 ESC Research Program: An Overview

May 10, 2005

Garrick J. Forkenbrock
NHTSA VRTC

Presentation Overview

- Program Objectives
- Background
- ESC Effectiveness Research
- Government and Industry Cooperation
- Conclusions
- Sources for Additional Information

Program Objectives

- Validate and refine NHTSA's proposed ESC identification criteria
- Work with industry to collaboratively gather data

Background

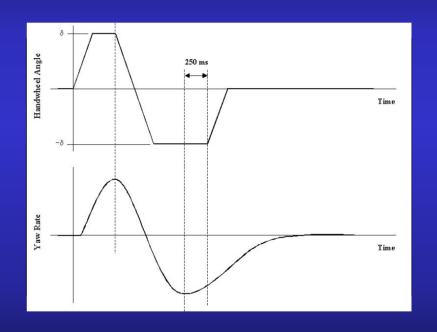
- 2004 Research Objectives:
 - Perform research supporting the development of maneuvers capable of objectively assessing handling
- Results from the handling tests would supplement NCAP rollover ratings
- Five diverse test vehicles used
 - Evaluated with ESC enabled / disabled

Background (continued)

- Midway through 2004, NHSTA expressed an increased interest in ESC effectiveness
- Focus of maneuver development changed from handling to ESC effectiveness
- By late 2004, NHTSA had isolated a reduced suite of test maneuvers and proposed ESC effectiveness criteria

ESC Research Effectiveness Criteria

- A vehicle with an effective ESC should:
 - Not spinout* (lateral stability measure)
 - Be able to achieve a minimum lateral displacement* (responsiveness measure)
 - Not produce two-wheel lift
 - Not produce rim-to-pavement contact or tire debeading
- These criteria must be satisfied during one of four specialized maneuvers presently being evaluated



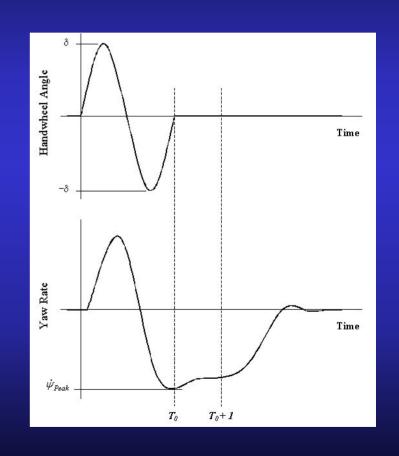
* discussed in this presentation

Test Maneuvers Performed With A Steering Machine

- Slowly Increasing Steer
 (for characterization use only)
- 0.7 Hz Sine with Dwell
- 0.7 Hz Increasing Amplitude Sine
- 500 deg/s Yaw Acceleration Steering Reversal
- 500 deg/s Yaw Acceleration Steering Reversal w/Pause

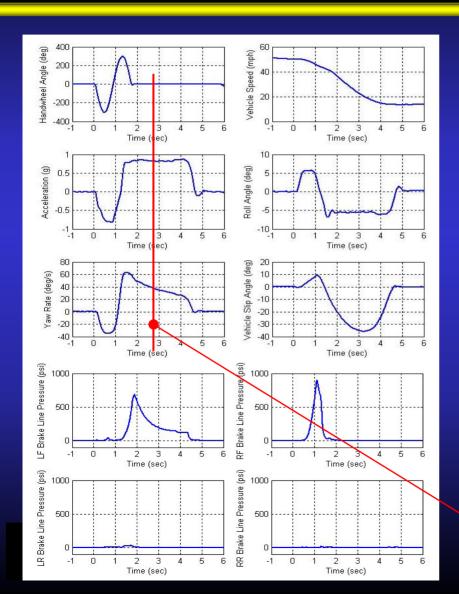
Test Conditions

- ESC enabled and disabled
- Test surface
 - Dry, high-mu asphalt
 - Maneuvers initiated while vehicle is being driven up a 1% grade
- Nominal load
 - Driver
 - Instrumentation
 - Outriggers if vehicle is an SUV, pickup, van, minivan, station wagon, or crossover vehicle


What is a "Spinout" Preliminary Definition

Percent
$$\dot{\psi}_{Peak} = 100 * \left(\frac{\dot{\psi}(t)}{\dot{\psi}_{Peak}} \right)$$

Set
$$t = t_0 + 1$$


Spinout occurs if Percent $\psi_{Peak} \ge 60\%$

What is a "Spinout" Threshold Example

0.6 Hz Sine Steer, SWA = 300 degrees

At $t_0 + 1$, Percent $\dot{\psi}_{Peak} = 60.6$

$$t = t_0 + I$$

What is a "Spinout" Sample Video

0.7 Hz Sine with Dwell

2004 Volvo XC 90 ESC Disabled SWA = 120 degrees

At $t_0 + 1$, Percent $\dot{\psi}_{Peak} = 18.9$

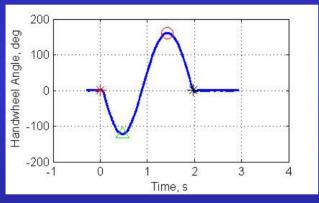
Threshold not exceeded

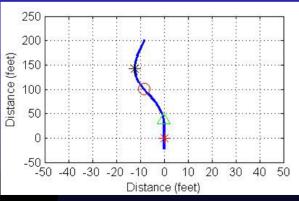
2004 Volvo XC 90 ESC Disabled SWA = 130 degrees

At $t_0 + 1$, Percent $\dot{\psi}_{Peak} = 84.1$

Threshold exceeded

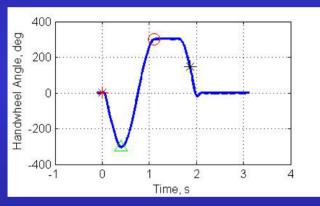
Lateral Displacement

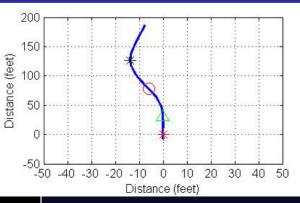

- An effective ESC should not impede responsiveness
 - Proposed minimum lateral displacement: 12-ft
 - Must be achieved prior to completion of a maneuver performed with δ_{max}
- Measured via GPS during testing
 - Referenced to pre-maneuver heading
- NHTSA's evaluation criterion will not penalize vehicles equipped with rollover mitigation technology



Lateral Displacement Threshold Example

0.6 Hz Increasing Amplitude Sine, Lateral Displacement = 12.2 ft




2004 GMC Savana
ESC Enabled
SWA = 160 degrees

Lateral Displacement Effects of an RSC

0.7 Hz Sine with Dwell, Lateral Displacement = 13.7 ft

2004 Volvo XC 90 ESC Enabled SWA = 300 degrees

Government and Industry Cooperation

- NHTSA hopes to collect data from 50 vehicles in 2005
 - Will help select the most efficient maneuver capable of determining whether a vehicle is equipped with an ESC
 - Used to improve the robustness of the spinout model
 - Will help assess the lateral displacement capability of ESC-equipped vehicles
- A cooperative testing effort between NHTSA and industry is underway
 - Test data from industry-evaluated vehicles is critical

Conclusion

- ESC research is a top priority for NHTSA
- Preliminary ESC effectiveness criteria have been identified
- A cooperative testing effort between NHTSA and industry is underway

Additional Information

ESC Docket

- http://dms.dot.gov/search/searchFormSimple.cfm
- Number 19951
- VRTC ESC Website
 - http://www-nrd.nhtsa.dot.gov/vrtc/ca/esc.htm

